本书将带你超越教室里的算术题和满是灰尘的教科书,去认识那些创造了无数奇迹的最伟大的头脑。他们的故事告诉我们是什么激励和驱使他们做出了令人难以置信的发现。在这个过程中,你会遇到令人惊奇的、令人兴奋的,有时甚至是十分怪异的故事,这些故事以你从未想象过的方式将数学带入日常生活。 本书通过重要的数学家、重要的数学概念和各种形状
面积法是一种有着悠久历史的传统方法。近几十年来,面积法体系得到进一步的发展,焕发出新的生命力,如今已成为平面几何中的基本方法,甚至成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具(共边定理和共角定理)以及指导思想(消点法),并辅以大量例题来说明用面积法解题的有效性。另外,书中还介绍了面积法与勾股定理、托
本书是与哈尔滨工业大学数学学院编写的《大学数学—线性代数与空间解析几何(第五版)》配套的学习辅导书。内容包括两部分,第一部分概括了主教材中行列式、矩阵、向量、线性方程组、相似矩阵、二次型的主要知识点,同时提供了丰富的综合练习题供读者练习使用;第二部分为2008~2021年全国硕士研究生入学统一考试代数部分试题详解,可供
本书包括传统的3维空间解析几何内容,还包括了高维解析几何、仿射几何、射影几何的基本内容。内容涉及向量代数、几何向量空间、直线、平面、超平面、二次曲线、曲面和超曲面、射影空间及其中的直线、平面、二次图形。内容选择注重几何体系的系统性和完整性,并充分考虑了现代数学和科学对几何,特别是高维几何和射影几何的新要求。全书结构完整
本书从不同的角度来探讨Teichmller理论和Grothendieck的dessinsdenfants(一种图嵌入)理论,既包括两种理论间的关系,也包括它们与其他几何学主题的关系。书中讨论了Riemann曲面及其模理论、复几何和低维拓扑中的一些基本问题,旨在为读者提供有关这些主题的重要参考资料。本书适合低维拓扑、组合
本书是“空间几何学”课程教材,主要内容有:课程绪论、柱面、锥面、旋转曲面、二次曲面、组合曲面与异形曲面等.本书根据*新的人才培养方案,为满足多个专业对于空间几何教学要求的提高而编写,可满足大学机械、建筑、陶瓷、艺术、机器人和其他新兴领域相关专业的课程设置和培养方案的要求.
《几何原本》是世界上最著名、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在《几何原本》中系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密
近代数学本质上可以说是变量数学,而变量数学的第一个里程碑就是解析几何的诞生.17世纪前,几何与代数是彼此独立的两个分支,解析几何的建立第一次真正实现了几何与代数方法的结合,使得数与形统一起来,这是数学发展史上的一次重大突破,不仅具有划时代的意义,还为数学思想的发展开辟了新的天地.本书以广泛概貌代表主要对象,将解析几何从
本书是一部英文版的数学专著,中文书名可译为《特殊芬斯勒空间的探究》。 芬斯勒空间是具有一系列平滑变化的闵可夫斯基范数的流形M;每个切空间中有一个。黎曼度量是由内积产生的芬斯勒范数的例子。在介绍流形及其结构的概念时,黎曼承认二次微分仅可以用于一种特殊的情况之中。不幸的是,当黎曼声称:研究四次微分形式的第四个根的度量很费时
《空间解析几何》是编者在吉林大学数学学院各专业讲授空间解析几何课程十余年的基础上编写而成的。《空间解析几何》主要内容包括:向量及其运算,空间仿射坐标系,空间平面和直线,常见的空间曲面和曲线,坐标变换,二次曲线和二次曲面的分类维空间和仿射变换等。《空间解析几何》注意培养读者的几何直观想象能力,强调数形结合,论证严谨同时又